
LJJ

PRINCIPLES FOR DEALING WITH LARGE PROGRAMS
AND LARGE DATA FILES IN POLICY STUDIES

DT IG
D T E ,CTE R. Yilmaz Argiden

JAN 18 1990

February i988

C'rt u nor. Unhi.mited1

P-740990 01 16 017



PREFACE

This paper presents scr,,e principles for dealing with the practical

conc,'rns of data analysis in the context of performing a policy analysis

stud-.,. These principles were followed in implementing the retirement

policy analysis models that are part of the Air Force Enlisted Force

Management System. It should be of interest to a wide audience of

techiiically competent analysts who already know data analysis and how to

it computer programs but who wish to improve their effectivene ss by

ipproaching thf, task of writing large programs and analyzing large data

sets systematically.

Acceso; For

NTISCR&I N;
ID VI. TA.3[

--,istr.ibo!'..,

Dist IQ (I ! o
Avft. i..,,ily C eSpecial

IA 1-€t



"v -

ACKNOWLEDGMENTS

I -ve learned most of the principles for dealing with large data

bases f-)m Daniel Relles of The RAND Corporation. Without his

instruc '. :.on, this research could not have been completed in such a short

tine. I also wish to thank Warren E. Walker, project leader of the

En' Lsted Force Management Projec<t, for his support.



- vii -

CONTENTS

PREFACE .......................................................... iii

ACKNOWLEDGMENTS ................................................. V

S,, t;,n
IVitroduction ................................................ 1
K!:ow Your Data ............................................... 2
KnIow Your Problem and the Tht-Dretical Models to be Used ..... 3
Make Time Investments at the Design Stage ................... 6
Conc ,s on ................................................... 10



!NTRC!?)UCTION

- T1: formal training of most analysts covers the theory of

statistical and quantitative modeling in great detail. But, because of

time constraints, even application-oriented courses provide experience

in dealing with only small data sets. My experience at RAND indicates

that maily real-life problems require analyses of large data sets.

Althoug!P the theoretical concerns are equally applicable to small and

airge data sets, some practical ccncerns (such as data cleaning, an

,analyst's understanding of the data sets, and writing computer code to

Lransfo:rm variables) could be considerably more difficult for large data

sets. Tnfortunately, these subjects are left for the analysts to learn

by experience. As eloquently suggested by the Chinese proverb, "What

I ve/he;rd, I don't know; what I've seen, I vaguely remember; what I've

dond, I know," experience is the most effective teacher. However,

learnin.- by one's own mistakes is a costly and slot; process.

I .Tas fortunate enough to learn some basic principles to deal with

the pra.:tical concerns of data analysis from others' experience--in

particular, from Daniel Relles of RAND.' Following these principles

improve(. the reliability, replicability, and efficiency of my analysis

of retirement policies, and enabled me to complete this analysis in a

short tn'me frame.2

Thn, purpose of this paper is to briefly explain these principles. 3't

The paper is written for technically competent analysts who already .

1S'-e for example, R. Yilmaz Arguden, Management of Large Data Sets: h
A Case ':tudy with California Oil Wells, The RAND Corporation, P-6802,
October 1982.

2 F-'r the theory and results of the retirement policy analysis, see
R. Yilm;-z Arguden, Personnel Management in the Military: Effects of
Retirem!nt Policies on the Retention of Personnel, The RAND Corporation,
R-3342-,.F, January 1986.

3F-,r more details on principles of data analysis, see Daniel
Relles, Aliocating Research Resources: The Role of a Data Management

Core Unit, The RAND Corporation, N-2383-NICHD, January 1986.
'F, r an excellent book on principles of computer programming, see

Dennie %an Tassel, Programming Style, Design, Efficiency, Debugging, ar-.J
Tosting. Prentice-Hall, Inc., Englewood Cliffs, 1978.



knoV data analysis and how to write computer programs but who wish to

improve their effectiveness by approaching the task of analyzing large

data sets systematically. Given the benefits of these principles in

dealing with real-life problems, I advocate making the study of these

principles a requirement in any graduate program for statisticians,

ecoromists, operations researchers, and oth'r quantitative analysts.((tp)

KNOW YOUR DATA

Although the small data sets may be prepared by the analyst

himself, large data sets generally are not prepared by the analyst but

they are obtained from other sources. Therefore, understanding the

contents of the data sets to be used in analyses should be the first

step. One could attempt to do this by reading the documentation for the

data sets, but my experience suggests that too frequently errors creep

into documentation and the documentation may not be current. Hence,

reading the documentation cannot replace looking at the data. But

visual inspection of large date sets is practically impossible. The

following steps can be used to look at the data.

Look at the Frequencies of All the Variables
Frequencies indicate the number of times various values of a

variable appear in the data. when the variable takes on too many

different values (e.g., income), all the digits beyond a desired number

of significant digits can be re-oded into a standard value before doing

the frequencies (e.g., if the desired number of digits is 2 then the

number 11,351 could be recoded as l1,xxx). At this stage, keeping the
data in character format (rathc than converting to integer or real

format) would avoid the unnecessary step of data conversion and would

pre-ient inadvertently changing the value of the data during the

coliver.;ion step.



-3-

Look at Partial Listings of Data

Partial listings improve the analyst's understanding of the data

set by allowing him to investigate relationships among variables within

a given observation. Proper foxmatting of partial listings (e.g.,

listing chosen variables next to each other rather than in the order

they appear in the data set, using blank spaces between observations to

improve readability, and listing a variable more than once each time a

joint relationship with another variable is being searched) can

facilitate an analyst's understanding of the data and the dete6tion of

errors. Because it is practically impossible to study and comprehend

the full data set when it is large, partial listings also improve the

understanding of units of measurement, completeness of the information

about each variable, and whether the definitions provided in the

documentation are accurate.

KNOW YOUR PROBLEM AND THE THEORETICAL MODELS TO BE USE-

The next steps involve using the variables in the source databas

to define others that are more useful for analysis (i.e., recoding of

variables), defining the units of observation (if necessary, aggregati g

or disaggregating raw data to relevant units of observation), merging in

other data sets to complete the information needed for analysis, and

selecting a relevant set of observations to analyze the policy questi,

at hand.

Ail of these steps are too important to be left solely to

programmers who may not be knowledgeable about the subject matter or t'ie

theoretical models to be used. Also, as the analyst's understanding -

the problem is increased, these steps may have to be repeated. Unless

the anailyst himself/herself is fully immirsed into the details of

recoding, reorganization, merging, and cbservation selection, many

errors can remain unnoticed nnd the policy recommendations can be

misleading.



-4-

Recoding of Variables

Recoding raw variables into variables that will be used in analysis

and about which analytical assumptions will be made requires good

knowledge of the modeling approach. For example, not incorporating

observations with some missing variables into the data set could cause

serious selection biases. To tle extent possible, rules for different

variables should be kept separate (e.g., different subroutines), user-

defined variables should be defined directly from raw data rather than

from other user-defined variables, and the data recoding algorithms

should be independent from the ,tructure of the data sets.

Following the above mentioned principles and the programming

principles explained below improve comprehensibility of programming code

and reliability oF the code, particularly during the numerous reruns

that would be required as the a'-alyst's understanding improves.

Reorganization, Sorting, and rging

Reorganization of data is more complicated if the units of

observation are being redefined. This may involve aggregating,

disaggregating, or changing the structure of the original data set to

facil' ite analysis. In some major research projects recoding and

reorganization steps took the majority of the time, much more than the

analysis step. This was time in the Enlisted Force Management Project.

However, without this major effort by experienced researchers, many of

the analyses would not have been possible.

The addition of new data to a data set is best accomplished by

preparing another data set with an index variable that provides the

crosswalk between the two data sets. Thin the two data sets can be

merged by the values of this index variable, with or without sorting.

This it, preferable to assigning the additional data within the

prograining code, because it keeps updates of data and code independent,

thereb reducing errors in the long run when either the code or the dita

need t. be changed.



5

In using large data sets, inalysts should be careful not to be over-

confident about the large numbers of perceived degrees of freedom (i.e.,

number of observations), because some variables, particularly those that

are merged from other data sets, may have very limited actual degrees of

freedom (e.g., average annual inflation rate in a data set having

500,000 airmen covering a ten-year time span has only nine degrees of

freedom).

Selection of Observations

All selection rules should be compartmentalized. Avoiding

introduction of selection biases in choosing the observations to analyze

is one of the most difficult steps of analysis. Often errors are

introduced to the analysis at this stage. Different analyses may

require a different subset of the original data set. By having all the

selection rules in one part of the code, the analyst can avoid

inadvertently leaving some observations out of the sample.

The analyst may wish to modify some of the selection rules once

preliminary analyses are conducted. This will be easier if the original

selection rules were compartmentalized. Also, when multiple researchers

use the same data set, compertmentalization allows easy comparison (or

even standardization) of selection rules.

Looking at Results

In regression analyses, analysis of residuals (checking for

patterns, looking at normal plots in an ordinary least squares analysis)

and checking for outliers may indicate errors in the original

preparation stages. Often visual aids help identify unsatisfied

assumptions. Yet, with large data sets visual aids such as residual

plots may simply have too much data. In that case, rather than doing

without these aids, it is preferable to create summary data sets

(aggregating predictions, residuals, residual errors, prediction errors

by values of different variables), which can then be used to create

meaningful residual plots.



- 6 -

Finally, unlike the situation with small data sets, when a large

data set is used in analyses, providing data listings in appendices is

infeasible. However, providing tables that indicate summary statistics

of the variables gives the readers of a report an idea about the data

set. Such tables can also provide the ranges of independent variables

to indicate the values of variables that can be used in making out-

of-sample predictions with confidence.

MAKE TIME INVESTMENTS AT THE DESIGN STAGE

Whether one is recoding or reorganizing data or writing programs

for analysis, the programming principles to be explained below are

equally valid. Almost all of them involve time investments when writing

the program the first time. Almost any algorithm one writes is likely

to be utilized more than the writer would think at the time he is

developing it. This is not because all algorithms are ingenious, but

because they are likely to be updated to reflect new knowledge the

analyst acquires during the study of the subject. Ironically, it is

usually the updates that cause errors to creep into the code,

particularly when the original code does not follow basic programming

principles. Also, once an algorithm for a specific purpose is

available, the writer would be more likely to adapt that code for a new

purpose than to write a new algorithm. Therefore, taking time to do it

right at the beginning saves a lot in the long run, both in terms of

reliability and time.

Keep It Simple

This simplicity in writing programs principle is the direct

anplication of an important engineering principle, "KISS" (Keep It

Simple, Stupid). Any program that does not make apparent sense is

likely to require a lot of time to understand (after a while even for

the original programmer) at the debugging stage and each time an update

is required. This is costly and invites error. The following

principles would produce simpler programs.



Selection of variable names is very important for readability of

programs. Therefore, use descriptive variable names and avoid variable

names that look alike, sound alike, or are spelled alike.

For example,

SAVING = INCOME - EXPENSE

is better than

A=B-C

which is better than

AlIXI = AI1XI - AIIXI.

Use of blank lines, indentation, and columnwise spacing of variable

lists to indicate program structure improves readability and

maintainability of programs (e.g., indenting the lines of code relating

to a DO loop). Program maintainability can also be improved by

providing more comments than seem necessary at the design stage, because

the users (after a long time period even the original programmer) are

unlikely to have the same mind frame as the programmer. Also, starting

to prepare documentation at the design stage is very important to fully

convey the road map of the program. The comments and the documentation

should provide a description of the program, inputs, variables, program

logic, outputs, and potential modifications that future users may

contemplate.

Accomplishing different tasks in different modules (subroutines and

functions) keeps each module simple enough to be understood without much

effort. Each module shouldI be independent from the larger program in

which it will be utilized. This can be accomplished by having all the

inputs and outputs passed to the module as arguments of the module.

(The use of COMMON statements should be limited to parameters that

define the environment and do not get updated within the larger

program.) Once such a module is tested to be correct, it can be used as

a part of a larger program without having to review its logic. This

reduces the complexity of large programs.



-8-

Maintainability of a program and programmer/user efficiency are

more important than computational efficiency of computer programs,

particularly with the recent develupments in hardware technologies.

Therefore, programming tricks to improve efficiency should be avoided

when they are likely to diminish simplicity or readability of the

program (e.g., mapping a variable with dimension "n" into another with

dimension "m,," where m < n, in modules that do not use all "n" values of

the variable). Also, spending too much time to improve the

computational efficiency of statements that will be executed only a few

times in the program is not worth the programmer's efforts.

Minimizing or eliminating the use of GO TO statements, and using

them only for skipping a number of lines of code rather than using them

to go back in the program improves readability of programs. This is

because it is easier to follow a top-down logic than a logic with many

branches and loops. Certain programming languages allow use of

structured programming more easily than others. Therefore, choice of

the programming language should take into consideration the complexity

of the task. Complex data recoding can be handled better in languages

like FORTRAN and PLI, whereas once the data are in two-way matrices it

is easier to use statistical packages like SAS and SPSS to do the

analysis and obtain summary statistics and graphs.

Keep Your Programs as General as Possible

When a program is independent from the context in which it is run,

errors are less likely to creep in during modifications, and it is

easier to adapt it to other purposes in the future. Therefore,

programming generality into the code increases the reliability and

utility of the program.

One of the important factors in making a program general is to use

variables instead of constants as parameters. If a constant is used,

each time it needs to be changed all the prngram lines using that

constant need to be changed. This is inefficient and invites error. If

certain constants are nevertheless used, th-r)s lines should be marked

with a special character (e.g., "@") to facilitate locating the lines



- 9 -

that need to be changed if and when the constant needs to be changed.

This is much easier to do during original programming than it is later,

when a change is required.

Making modules independent from each other improves the generality

of the program. Each module should also be independent from source of

input, output, and past use of the module. This can be accomplished by

having all the inputs and outputs passed to the module as arguments of

the module, minimizing use cf COMMON statements, and initializing local

variables (i.e., variables that are used only in a specific module) in

the subroutine in which they are used.

Finally, testing, each module for a wide range of values for input

variables, including normal, extreme, and exceptional cases, increases

its reliability. Developing test data, introducing debugging aids into

the modules at the design stage, and thoroughly testing each module

prior to using it in a major program reduces errors and total debugging

time. Investing time at the design stage is much more efficient than

trying to put out brush fires after starting the analysis stage.

Leave All Routine Tasks to the Computer

Humans are more error prone than computers. Therefore, leaving

routine tasks to the computer by minimizing manual changes to the

program for each run increases reliability and allows the analyst to

focus on analytical issues. However, this too requires up-front time

investments.

Making modifications to the program at each run by electronic means

minimizes the risk of introducing errors through manual changes.

Electronic modification can be accomplished by preparing a command file

(possibly using a text editor on a PC) that automatically modifies all

relevant lines of the program and feeding this command file to the

sv.tem (through a c ommunications package). Also, saving all programs

relevant to a particular task in one file makes automatic modification

easier and ensures consistency of modifications across programs.

Often errors are introduced in modifying output locations, and in

al locating space and time f each run. However, having these as part

of the command file could avoid many errors. Particularly if the



- 10 -

command file itself follows the programming principles already

explained, these errors can be avoided (e.g., leaving constants like

output tape numbers as variable names rather than leaving the last tape

numbers used would avoid writing over valuable data). Messages to the

computer operator to load and unload tapes can be changed automatically

with the changes in JCL (job control language), thus ensuring

consistency.

Command files can also be used to keep a log of the input values

and output locations used for each run by having such information saved

automatically rather than leaving this to be done manually. Assigning

descriptive labels to output tables and graphs is very important to

avoid confusion. When the same program is run at different times with

different assumptions, the output labels, which are usually assigned

manually, may not be unique. Using command files and including the date

and time in the label prevents this problem. The best place to store a

genera] version of such a command file to be updated for each run is

within the program itself in the form of comment lines. r'inally,

updated command files can be saved for future reference, avoiding any

uncertainity about the manual modifications made for a given run.

CONCLUSION

This paper has briefly described some practical principles to

improve the effectiveness of quantitative analyses using large data

sets. Most of these principles are fairly simple and can easily be

learned through experience. However, many analysts whose formal

training has covered only theoretical aspects of quantitative analyses

may not have had the time to figure out and follow these simple

principles. Not investing the time required to follow these principles

could cost dearly in the long run in terms of unreliability,

irreplicability, and inefficiency of the analysis, which in turn may

lead to misleading policy recommendations.


